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The objective of this paper is to identify the optimal load selection at the intermediate time point of the
q1-Bathe time integration method. We study the truncation errors of the scheme in homogeneous and
forced responses for various parameters. The optimal load at the sub-step is determined by minimizing
the global truncation errors of forced responses. A numerical impulse analysis shows that the optimal
load at the sub-step thus established actually corresponds to numerical impulses at the three- and
four-point Newton-Cotes formulas for the second- and third-order accuracy cases, respectively. We illus-
trate the findings of our theoretical study in example solutions of two-dimensional structural dynamics
and wave propagation problems. With the optimally selected load at the sub-step, more accurate solu-
tions can be obtained in some analyses.
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1. Introduction

In practical finite element analysis of structural dynamics and
wave propagation problems, the dynamic equilibrium equations
are frequently solved by direct time integration [1–3]. Then two
types of schemes, explicit and implicit methods are used [3]. Since
an explicit scheme is only conditionally stable, it may be effectively
employed when the time step size required by the stability limit is
comparable to the time step size needed by accuracy considera-
tions, i.e., in impact, crash, and short time wave propagations. On
the other hand, an implicit scheme can be unconditionally stable,
and such scheme is often preferred.

Many implicit time integration schemes have been proposed,
and much effort has been devoted to finding the best use [4–12].
In the last decade, in particular, much research effort has been
focused on developing new time integrations based on the com-
posite strategy with sub-steps [13–25] after the introduction of
its first kind, the standard Bathe method [26–27]. Recently, as a
generalization of the standard and b1=b2-Bathe schemes [28–29],
the q1-Bathe method was proposed by Noh and Bathe [30]. The
spectral properties of the method can be changed effectively with
one-parameter, q1. The q1-Bathe method contains as special cases
the standard and b1=b2-Bathe schemes and the Newmark method
at its best use [31]. Recently, the effective use of the Bathe schemes
in wave propagation analysis with linear finite elements was stud-
ied [32].

The Bathe methods split the time step into two sub-steps. The
methods can be first, second or third-order accurate, depending
on the values of the parameters, but these assessments were all
carried out – as is usual – looking only at the non-forced response
solution, that is, considering only initial conditions, see Refs. [28–
34]. In practice of course, loading is applied and hence we need
to understand the behavior of a time integration method when
loading is used.

Using the Bathe methods, it is important to see that all calcula-
tions in the sub-step may be regarded as part of an ‘‘internal pro-
cedure” per step.

Namely, the key point is that the solution at the intermediate time
point is only used for the calculation of the solution at the full step
[26–34]. Any reasonable procedure in the sub-step calculation is a
candidate to improve the complete solution scheme.

It therefore follows from the underlying principle of the basic
strategy, that we may modify the procedure or values of parame-
ters used in the calculations of the sub-step. Of course, it then
needs to be demonstrated that the novel procedure is effective.
In this paper, we focus on the different use of the externally
applied load in the equilibrium equations at the intermediate time
point.
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https://doi.org/10.1016/j.compstruc.2021.106559
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For single-step methods, only some research efforts have been
directed to the modification of the external loads for the cases of
rapidly varying or impulsive loads. For the use of a larger time step
in the solution of problems with rapidly varied loads, the momen-
tum equations of motions were used instead of force equilibrium
[35–37]. Other strategies to overcome the difficulty arising from
the load discontinuity are the use of a single small time step, when
needed, near the change of the load intensity [38], or adjusting the
input load at the instant of load discontinuity [39]. For adjusting
the input load, the assumed load at the load discontinuity is set
to the average of the two discontinuity values for the trapezoidal
rule. In the Noh-Bathe explicit method [41], when the external
loads are only available at the full step, the load is established
according to a numerical impulse analysis at the intermediate time
point; otherwise, the given load is used.

Our objective in the present study is to understand the effect of
the magnitude of the load value at the sub-step on the solution
accuracy of the q1-Bathe scheme. This then enables us to identify
the optimal load value to be used at the sub-step, based on mim-
imizing the numerical errors. In particular, we may want to choose
the load value such that the possible order of accuracy (with no
external load applied) is not reduced. We use two approaches to
select appropriate loads at the sub-step for the q1-Bathe schemes:
a truncation error analysis [43] and a numerical impulse analysis
[41]. Using the truncation error approach, we determine the opti-
mal selection of the load at the sub-step by minimizing the global
truncation error of the forced response solution. Thereafter, using
the numerical impulse approach we study how an impulse at the
sub-step affects the response and can identify based on this
approach also the optimal load at the sub-step. The results from
both approaches are shown to be identical.

In Section 2, we study the local and global truncation errors for
the q1-Bathe method using various values of parameters. In Sec-
tion 3, a load selection strategy based on the numerical impulse
analysis is presented. In Section 4, we provide numerical results
obtained using various sub-step loads in the solutions of a
single-degree-of-freedom problem, a 2D structural dynamics prob-
lem, and a 2D wave propagation problem. These solutions illus-
trate the findings of our theoretical study.

2. Truncation error analysis

In this section, we first establish truncation errors in homoge-
neous and forced responses. We then seek the solution errors of
the q1-Bathe method on both a local and global scale with its
two-level form. The local truncation error is the truncation error
that occurs in one step of the time integration scheme. The global
truncation error is the truncation error that accumulates in the
solution of a problem over the complete time domain considered.

Once we have established the global truncation error, we can
identify the optimal load to be used at the sub-step. This load min-
imizes the global truncation error of the particular solution (forced
response).

In the following we use a simplified notation, for example the
time step is now h ¼ Dt (Dt was used earlier [3]). This enables us
to focus more easily on the essence of the analysis.

2.1. Energy-based error measure

The equations of motion in linear structural dynamics are, see
e.g. Ref. [3],

_u
_v

� �
¼ 0 I

�M�1K �M�1C

� �
u
v

� �
þ 0

M�1f

� �
ð1Þ

or
2

_x ¼ Fxþ g ð2Þ
with the analytical solution for the response at time t

x
�

tð Þ¼F t�t0ð Þx t0ð Þ þ
Z t

t0

eF t�sð Þg sð Þds ð3Þ

whereM, C, K , f , v , and u are the mass, damping, stiffness matrices,
external forces (moments), velocity, and displacement vectors,
respectively, and an overdot denotes a time derivative.

The first and second terms of the right-hand side of Eq. (3) rep-
resent the homogeneous and particular solutions, respectively.

We define the energy-based error measure as

E tð Þ :¼ 1ffiffiffi
2

p k C1=2Ex tð Þ k2 ð4Þ

where C :¼ diag K ; Mð Þ is the block diagonal scaling matrix and
Ex tð Þ is the error vector of the displacement and velocity

Ex tð Þ ¼ u tð Þ � u
�

tð Þ; v tð Þ � v
�

tð Þ
h i

. Here, u
�

tð Þ and v� tð Þ are the ana-

lytical solutions obtained using Eq. (3).

2.2. Calculation of errors with a two-level formulation

The q1-Bathe method uses the trapezoidal rule in its first sub-
step with time step size ch, where c is the time step splitting ratio.
In linear dynamic analysis, we use with the equilibrium equations
at the end of the sub-step [3]:

Manþc þ Cvnþc þ Kunþc ¼ f̂ nþc ð5Þ

unþc ¼ un þ ch
2

vn þ vnþc
� � ð6Þ

vnþc ¼ vn þ ch
2

an þ anþc
� � ð7Þ

where a denotes an acceleration vector. Here the externally applied

load f̂ n þ c is the load actually used for the sub-step calculation and
may not be the same as the given external force at time ðnþ cÞh,
f nþc.

Note that in Eqs. (5)–(7) we introduce another simplification of
the notation; namely in all subscripts for the solution and external
force vectors we denote the time nh = nDt ¼ t and ch simply as n
and c, respectively, but this notation is only used for subscripts.

In the second sub-step, the following relations are used with the
parameters q0, q1, q2, s0, s1, and s2 for the equilibrium at the end of
the full step, from n to n + 1:

Manþ1 þ Cvnþ1 þ Kunþ1 ¼ f nþ1 ð8Þ

unþ1 ¼ un þ h q0vn þ q1vnþc þ q2vnþ1
� � ð9Þ

vnþ1 ¼ vn þ h s0an þ s1anþc þ s2anþ1
� � ð10Þ

The q1-Bathe scheme has second-order accuracy with and
without damping when the following relations are used

q1 ¼ s1 ¼ q1 þ 1
2c q1 � 1ð Þ þ 4

; q0 ¼ s0 ¼ c� 1ð Þq1 þ
1
2
; and

q2 ¼ s2 ¼ �cq1 þ
1
2

ð11Þ

With a proper set of values of the parameters, the q1-Bathe
scheme reduces to the standard-Bathe, b1=b2-Bathe, and the

(two-step) Newmark method with a ¼ 0:25ðdþ 0:5Þ2. Hence the
q1-Bathe method ‘‘contains” these schemes as special cases [31].

In Ref. [31], we also give the condition for third-order accuracy
in the period elongation and amplitude decay using the q1-Bathe
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method with q1 2 ð�1; 1 �
ffiffiffi
3

p
�. We refer to Ref. [44] for the

details of the higher-order q1-Bathe scheme with a larger range
of q1 including q1 2 ½0;1� in the solution of structural dynamics
and heat flow problems.

With the equilibrium equations at time nh, ðnþ cÞh, and
ðnþ 1Þh, the q1-Bathe scheme can be rewritten into the form

ch
2K M þ ch

2C

I �ch
2 I

 !
unþc
vnþc

� �
¼ �ch

2K M � ch
2C

I ch
2 I

 !
un

vn

� �

þ
ch
2 f n þ f̂ nþc
� �

0

 ! ð12Þ

hs2K M þ hs2C
I �hq2I

� �
unþ1

vnþ1

� �
¼ �hs1K �hs1C

I hq1I

� �
unþc
vnþc

� �

þ �hs0K M � hs0C
I hq0I

� �
un

vn

� �
þ h s0f n þ s1 f̂ nþc þ s2f n þ 1

� �
0

 !

ð13Þ
Substituting Eq. (12) into Eq. (13), we obtain the following two-

level form for a typical modal equation of Eq. (1),
aþ 2nx0v þx2

0u ¼ f with damping ratio n, natural frequency x0

and external force f ,

xn ¼ Anx0 þ Bn ð14Þ
where x, A and B are the state vector, amplification matrix, and load
vector related to the forced response, respectively (See Appendix),
with n (n = 1,2,3, ..) denoting here the state to be calculated and
we have

xn ¼ un vn½ �T ; Bn ¼
Xn�1

k¼0

An�k�1bk ð15Þ

where bn is the direct load vector at time nh. Here un and vn are the
displacement and velocity at time t.

We can now establish the energy-based error in Eq. (4). Consid-

ering the time domain 0 to nh with x0 ¼ x
�

0ð Þ, we obtain the fol-
lowing relation:

E nhð Þ :¼ 1ffiffiffi
2

p k C1=2 An � eFnh
	 


x0 þ Bn �
R nh

0
eF nh�sð Þg sð Þds

� �
k
2

6 1ffiffiffi
2

p k C1=2 An � eFnh
	 


x0
	 
 k2

þ 1ffiffiffi
2

p k C1=2 Bn �R nh

0
eF nh�sð Þg sð Þds

� �
k
2

ð16Þ

Note that the first component in Eq. (16) captures error in the

initial energy E0 :¼ k C1=2x0 k22=2. With the assumption of positive
definiteness of C (that is, the stiffness matrix Kand M are positive
definite), this dependency is removed by maximization over all ini-
tial conditions with unit energy [43]. Therefore, we define the
errors related to the homogeneous and forced responses as
E1 nhð Þ and E2 nhð Þ, respectively:

E1 nhð Þ :¼ k C1=2 An � eFnh
	 


x0
	 


C�1=2 k2
E2 nhð Þ :¼ 1ffiffi

2
p k C1=2 Bn �

R nh
0 eF nh�sð Þg sð Þds

� �
k
2

ð17Þ

where E2 nhð Þ depends on the external loads.
Considering the leading-order terms of the Taylor series expan-

sion of these error expressions around h ¼ 0, we show below that
the orders of accuracy of the time integration scheme are given by

E1 nhð Þ � Cl
1h

k1þ1
; E2 nhð Þ � Cl

2h
k2þ1 ð18Þ
3

where we consider the local truncation errors, k1 and k2 are the

orders of solution accuracy, and Cl
1 and Cl

2 are constants calculated
from the limiting behavior of E1 nhð Þ and E2 nhð Þ, respectively, when
the time step size approaches zero. We shall see that, as expected,
the global truncation errors are of one order lower than the local
errors.

2.3. Local errors in the calculations of homogeneous and forced
responses

We first discuss the case of 2nd order accuracy in the solution
and then proceed to the case of third order solution accuracy.

Case of 2nd order accuracy in the solution
The Taylor series expansion of E1 nhð Þ in Eq. (17) for the q1-

Bathe scheme gives

E1 nhð Þ ¼ r1x2
0nh

3

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
1 � g2

2

qr
þ Ol h4

� �
g1 ¼ 2x2

0n
2 þ x4

0 þ 1
	 


1� 4n2
	 
2

=2þ 8x6
0n

2 1� 2n2
	 
2

g2 ¼ x2
0 1� 4n2
	 
2 � 8x4

0n
2 1� 2n2
	 


r1 ¼ 3cðc�1Þðq1þ1Þ
2cðq1�1Þþ4 þ 1

2

ð19Þ

with the superscript l in Ol signifying ‘‘local”. Since the exponent on
h in Eq. (19) is ‘‘3”, this error corresponds to second order accuracy
in the overall solution (see Section 2.4).

To analyze the solution corresponding to the forced response,
we consider a periodic load since a general load can frequently
be expressed as a Fourier sum of harmonic functions. We focus
on the error when a sinusoidal loadf tð Þ ¼ sinxt; x–x0 is applied
to find an effective load value at the intermediate time point.

To establish the load at the sub-step with the given external
load data, we use the following relation:

f̂ nþc ¼ w�1f n�1 þw�1þcf n�1þc þw0f n þwcf nþc þw1f nþ1 ð20Þ
where w�1, w�1þc, w0, wc, and w1 are ‘‘weights on the loading” cor-
responding to the directly evaluated loads f n�1, f n�1þc, f n, f nþc, and
f nþ1. Hence f nþc is the given external load value at time ðnþ cÞDt,
and f̂ nþc is the selected load used in the calculation of the first
sub-step to obtain, if possible, a more accurate response solution.

Using the Taylor series expansion around f n, we obtain the first
condition for the weights that should be satisfied

w�1 þw�1þc þw0 þwc þw1 ¼ 1 ð21Þ
and for a sinusoidal loading, we obtain from the Maclaurin series

expansion of
R nh
0 e F nh�sð Þð Þsin xsð Þds (See, Eq. (3))

Z nh

0
eF nh � sð Þsin xsð Þds ¼

xn3h3

6 � nx0xn4h4

12 þ Ol h5
� �

xn2h2

2 � nx0xn3h3

3 � xn4h4

24 x2 þx2
0 1� 4n2
	 
	 
þ Ol h5

� �
2
64

3
75

ð22Þ
where the first and second rows correspond to the displacement
and velocity components, respectively.

The difference between the numerical and analytical load vec-
tors in one timestep is hence

B0 �
Z h

0
eF h�sð Þsin xsð Þds ¼

Ol h3
� �

w1 þwccþw�1þc c� 1ð Þ �w�1 � c
	 


xh2 þ Ol h3
� �

2
64

3
75

ð23Þ
Therefore, in order to have second-order accuracy in the solu-

tion for the forced response we use

w1 ¼ c 1�wc
	 
þw�1þc 1� cð Þ þw�1 ð24Þ
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With Eqs. (21) and (24), the error on the forced response
becomes

E2 nhð Þ ¼ r1xnh3

6
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2x4

0

q
þ Ol h4

� �
ð25Þ

From the derivatives of E1 nhð Þ in Eq. (19) and E2 nhð Þ in Eq. (25)
with respect to c, we obtain the expression of c in terms of
q1 2 ½0; 1� to have the minimum errors for both the homogeneous
and forced responses of the second-order accurate q1-Bathe
method as

c0 ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2q1

p
1� q1

; c0 ¼ 0:5 if q1 ¼ 1 ð26Þ

We note that this value of c is also the value to use to have iden-
tical effective stiffness matrices for each sub-step, and the maxi-
mum (locally) amplitude decay and minimum (globally) period
elongation, as reported in Ref. [30].

Case of 3rd order accuracy in the solution
Since Eqs. (19) and (25) are general expressions, they also pro-

vide q1 in terms of c to have third-order accuracy in the solution
for both the homogeneous and forced responses. Using r1 ¼ 0 in
Eq. (19) leads to

E1 nhð Þ ¼ r2x3
0nh

4

24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�2

1 � g
�2

2

qr
þ Ol h5

� �
g
�
1 ¼ x2

0 1 � 4n2
	 
2

=2 þ 8 x4
0 þ 1

	 

n2 1 � 2n2
	 
2 þ x6

0 16n4 � 12n2 þ 1
	 
2

=2

g
�
2 ¼ 16x2

0n
2 1 � 2n2
	 
2 þ x4

0 1 � 4n2
	 


16n4 � 12n2 þ 1
	 


r2 ¼ cð3c2�2Þðq1þ1Þ
cðq1�1Þþ2 þ1

ð27Þ
which corresponds to third order accuracy in the solution of the
homogeneous response. Using r1 ¼ 0 as well in Eq. (25) gives also
third-order accuracy in the forced response solution.

Then minimizing the error in both the homogeneous and forced
responses of the third-order accurate q1-Bathe method with
respect to c gives then

cp ¼
q1 þ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
1 � 2q1 � 2

p
3ðq1 þ 1Þ ; q1 2 ð�1; 1�

ffiffiffi
3

p
� ð28Þ

for which indeed r1 in Eq. (19) equals 0. Note that the relation in Eq.
(28) is identical to the condition for the q1-Bathe method to have
third-order accuracy as derived from the period elongation and
amplitude decay, see Ref. [31].

Using Eq. (28), that is, considering the q1-Bathe method with
third-order accuracy, the leading term in the error of the forced
response solution is of order of 4, and is a function of the weights
on the loading

E2 nhð Þ ¼ x0xnh4

12
ffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 3naþ q1bð Þþx2

0 1�4n2
� �

r2

� �2
þ2n2r2

2

r
þOl h5

� �

a¼wccq1 c�1ð Þþw�1þcq1 c�1ð Þ c�2ð Þþ2w�1q1 þ1=6

b¼wcc 2c�1ð Þ c�1ð Þþw�1þc c�1ð Þ 2c2 �7cþ6
	 
�6w�1

ð29Þ
Hence, in this case, both local errors E1 nhð Þ and E2 nhð Þ are pro-

portional to h4.

2.4. Global errors in the calculations of the homogeneous and forced
responses

When n ¼ T =h (here, T is the considered time duration), we
can calculate the global truncation errors based on the local trun-
cation errors to be
4

E1 Tð Þ � Cg
1h

k1 ; E2 Tð Þ � Cg
2h

k2 ð30Þ
where Cg

1 and Cg
2 are constants for E1 Tð Þ and E2 Tð Þ, respectively.

Substituting n ¼ T =h into Eqs. (19) and (25), the global trunca-
tion errors of the second-order accurate q1-Bathe scheme are

E1 Tð Þ ¼ r1x2
0Th

2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
1 � g2

2

qr
þ Og h3

� �
ð31Þ

E2 Tð Þ ¼ r1xTh2

6
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n2x4

0

q
þ Og h3

� �
ð32Þ

We may actually reduce the error by minimizing E2ðTÞ with
appropriate weights on the loading. For the weights to be indepen-
dent of x0, x, and n, the condition for the summation of the terms
related to the weights to be zero leads to the following relation:

wc ¼ 1
2cq1

n
1 � cð Þ 2c þ 3n � 1ð Þð Þ þ 2c2 þ 3n � 7ð Þc � 6 n � 1ð Þ

�c 2c þ 3n � 1ð Þð Þ w�1þc

þ 6 n � 1ð Þ
c 1 � cð Þ 2c þ 3n � 1ð Þð Þw�1

ð33Þ

When n ! 1, Eq. (33) gives

lim
n!1

wc ¼ 1
6cq1 1 � cð Þ þ 2 � c

c
w�1þc þ 2

c 1 � cð Þw�1 ð34Þ

Therefore, for the second-order accurate q1-Bathe method with
c0 the error in the forced response is minimized when the load at
the intermediate time point is selected using the weights satisfying
Eqs. (21), (24) and (34).

For the third-order accurate q1-Bathe method, we obtain the
global truncation errors from Eqs. (27) and (29):

E1 Tð Þ ¼ r2x3
0Th

3

24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
�2

1 � g
�2

2

qr
þ Og h4

� �
ð35Þ

E2 Tð Þ ¼ x0xTh3

12
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ax2T=hþ q1bx2 þ 1� 4n2

	 

r2x2

0

	 
2 þ 2n2r2
2

q

þ Og h4
� �

ð36Þ

To minimize the error in the forced response, we use Eq. (34)
and the relation obtained by forcing the term related to x in

Og h3
� �

of Eq. (36) to become zero:

w�1þc ¼ c 1 � 2cð Þ
2c2 � 7c þ 6ð Þwc þ 6

c � 1ð Þ 2c2 � 7c þ 6ð Þw�1 ð37Þ

Hence we use with cp given in Eq. (34) also Eq. (37) to minimize
the amount of the error. Therefore, for the third-order accurate
q1-Bathe method with cp, the weights on the loading may be
determined using Eqs. (21), (24), (34) and (37).
2.5. The loading for minimum global errors in the forced response
calculations

For the second-order accurate q1-Bathe method, the equations
related to the weights on the loading are Eqs. (21), (24), and (34).
Therefore we can determine the optimal loading using just three
time points:

f̂ nþc ¼ w0f n þ wcf nþc þ w1f nþ1 ð38Þ

where we set w�1 ¼ w�1þc ¼ 0. The optimal loading at the sub-
step becomes
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f̂ nþc ¼ 6cq1 1 � cð Þ � 1
6cq1

f n þ 1
6cq1 1 � cð Þ f nþc

þ 6cq1 1 � cð Þ � 1
6q1 1 � cð Þ f nþ1 ð39Þ

Using Eq. (39) with the second-order accurate q1-Bathe
method, provides more accurate solutions than the use of the given
load. However, we note that using the load in Eq. (39) for the third

order accurate method, i.e. using Eq. (28), simply gives f̂ nþc = f nþc.
For the third-order accurate q1-Bathe method, the equations

related to the weights on the loading are instead Eqs. (21), (24),
(34), and (37). Therefore, we use four time points, which leads to

f̂ nþc ¼ wc�1f n�1þc þ w0f n þ wcf nþc þ w1f nþ1

¼ 1 � 2c
12q1 1 � cð Þ 2 � cð Þ f n�1þc þ 1 � c � 4c2 � 11c þ 6

12cq1 1 � cð Þ 2 � cð Þ

� �
f n

þ 2c2 � 7c þ 6
12cq1 1 � cð Þ 2 � cð Þ f nþc þ c þ 4c � 5

12q1 1 � cð Þ 2 � cð Þ

� �
f nþ1

ð40Þ

We note that the loads selected at the sub-step from Eqs. (39)
and (40) are identical to the loads obtained from the three-point
and four-point Newton-Cotes formulas [3], respectively (see
Section 3.2).

3. Numerical impulse analysis

A typical modal equation of Eq. (1) is

a þ 2nx0v þ x2
0u ¼ f ð41Þ

where n, x0, and f are damping ratio, natural frequency and exter-
nal force, respectively.

Integrating Eq. (41) from t to t þ h, we obtain

Z t þ h

t
f � x2

0u
	 


dt ¼
Z t þ h

t
a þ 2nx0vð Þdt ð42Þ

or

Z t þ h

t
f � x2

0u
	 


dt ¼
Z t þ h

t
dv þ 2nx0

Z t þ h

t
du ð43Þ

Using the q1-Bathe scheme (Eqs. (9) and (10)) for Eq. (43), we
obtainZ t þ h

t
f � x2

0u
	 


dt ¼ h q0f n þ q1 f̂ n þ c þ q2f nþ 1

h
� x2

0 q0un þ q1un þ c þ q2unþ 1
	 
� ð44Þ

Since Eq. (44) holds for the general loading and trajectory, we
have

Z t þ h

t
fdt

�����
q1 - Bathe

¼ h q0f n þ q1 f̂ n þ c þ q2f nþ 1

� �
ð45Þ
3.1. Sub-step load from the two-point closed Newton-Cotes
quadrature rule

In many practical problems, external loads are only given at dis-
crete time points. If the external forces are only given at times t
and t þ h as f n and f n þ 1, we may use

Z t þ h

t
fdt ¼ h af n þ 1 � að Þf nþ1

� � ð46Þ

where a is a weight.
5

Using Eqs. (45) and (46), we obtain the load at the sub-step for
the q1-Bathe scheme to be

f̂ n þ c ¼ 1� cð Þf n þ cf nþ1 þ a � 0:5ð Þ
q1

f n � f nþ1

	 
 ð47Þ

In general, the case a ¼ 0:5 yields the most accurate approxi-
mation; thus we use a ¼ 0:5 to approximate the numerical
impulse when external loads are defined only at discrete time
points, h apart. In this case, the external force at the sub-step is
selected as

f̂ n þ c ¼ 1� cð Þf n þ cf nþ1 ð48Þ
This means we have ðw�1;w�1þc;w0;wc;w1Þ ¼ ð0;0;1� c;0; cÞ

in Eq. (20), which satisfies Eqs. (21) and (24), but not Eq. (34).
Therefore, the selected load at the sub-step by Eq. (48) provides
second-order accuracy in forced response; however, the error is
larger than when the load in Eq. (39) or a given load, f nþc, is used.
Therefore, the load obtained from the trapezoidal rule in Eq. (48) is
recommended only when the load data is not available at the inter-
mediate time point [45].

3.2. Sub-step loads from the three-, four-, and five-point Newton-Cotes
formulas

For the case that external loads at the intermediate time points
are available, we can use the three-point Newton-Cotes formula to
approximate the numerical impulse by considering the time points
t, t þ ch, and t þ h:
Z t þ h

t
fdt

�����
3 - point

¼ h=6
c 1 � cð Þ 1 � cð Þ 3c � 1ð Þf n þ f n þ c þ c 2 � 3cð Þf n þ 1

h i

ð49Þ
With Eqs. (45) and (49), we obtain the load at the sub-step

which renders the numerical impulse of the q1-Bathe scheme to
be identical to the impulse obtained by the three-point Newton-
Cotes formula:

f̂ n þ c ¼ c q1 � 1ð Þ þ 2
3c 1 � cð Þ q1 þ 1ð Þ f n þ c

þ 2 � 3cð Þcq1 � 3c2 þ 4c � 2
3 q1 þ 1ð Þ

f n
c
þ f n þ 1

1 � cð Þ
� �

ð50Þ

We note that Eq. (50) is identical to Eq. (39).
Also, we may approximate the numerical impulse with the

four-point Newton-Cotes formula by using the external loads at
time t þ c � 1ð Þh, t, t þ ch , and t þ h:

Z t þ h

t
fdt

�����
4 - point

¼ h=12
c 1 � cð Þ 2 � cð Þ

� c 1 � 2cð Þf n�1þc þ c � 2ð Þ 6c2 � 10c þ 3
	 


f n
þ 2c2 � 7c þ 6
	 


f n þ c þ c 6c2 � 14c þ 7
	 


f n þ 1

" # ð51Þ

and, with Eqs. (45) and (51), the corresponding load at the sub-step
becomes

f̂ n þ c ¼ 1 � 2cð Þ cq1 � c þ 2ð Þ
6 1 � cð Þ 2 � cð Þ q1 þ 1ð Þ f n � 1 þ c þ 4c � 3ð Þ

3c q1 þ 1ð Þ þ 6c2 � 8c þ 3
6 1 � cð Þ

� �
f n

þ 3 � 2c
6 1 � cð Þ þ 3 � 2c

3c q1 þ 1ð Þ
� �

f n þ c þ c 6c2 � 14c þ 7ð Þ
6 1 � cð Þ 2 � cð Þ þ 4c � 5

3 2 � cð Þ q1 þ 1ð Þ
� �

f n þ 1

ð52Þ

Notably, Eq. (52) is identical to the result from the global trun-
cation error analysis for the third-order accurate q1-Bathe scheme,
Eq. (40).



Table 1
Selection of the load at the intermediate time point of the q1-Bathe method.

(1) For second-order accurate method in displacement, velocity and acceleration (with c ¼ c0 in Eq. (26) and q1 2 ½0; 1�):
Use the load selected by three-point Newton-Cotes rule, f̂ nþc in Eq. (39) (=Eq.(50)) which minimizes the global errors in forced responses, with mimimum number of

load data.

(2) For third-order accurate method in displacement, velocity and acceleration (with c ¼ cp in Eq. (28) and q1 2 ð�1; 1�
ffiffiffi
3

p
�):

Use the load selected by four-point Newton-Cotes rule, f̂ nþc in Eq. (40) (=Eq.(52)) which minimizes the global errors in forced responses, with mimimum number of load
data.

(3) When the load data is not available at the intermediate time point:

Use the load selected by trapezoidal rule, f̂ nþc in Eq. (48), for both second- and third-order accurate methods.
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By subtracting Eqs. (51) and (49), we obtainZ t þ h

t
fdt

�����
3 - point

�
Z t þ h

t
fdt

�����
4 - point

¼ 1 � 2cð Þh4

72
f ð3Þ tð Þ þ O h5

� �

ð53Þ
which shows the difference between the numerical impulses
obtained by the three- and four-point Newton-Cotes formulas to

be proportional to h4 per step, h3globally. Therefore, for the
second-order accurate q1-Bathe method, using the load at the
sub-step calculated from the Newton-Cotes formulas involving
more than three points would provide marginal differences.

Likewise, calculating the sub-step load for the third-order accu-
rate q1-Bathe method by using Newton-Cotes formulas involving
more than four points would hardly increase the solution accuracy.
We may check that the difference between the numerical impulse
calculated from the four- and five-point Newton-Cotes formulas is

proportional to h4globally:Z t þ h

t
fdt

�����
4 - point

�
Z t þ h

t
fdt

�����
5 - point

¼ 5c2 � 10c þ 4
	 


h5

720
f ð4Þ tð Þ þ O h6

� �
ð54Þ
Fig. 1. Damped SDOF system solved by the q1-Bathe schem

6

4. Numerical examples

We give in this section some example solutions that illustrate
our theoretical findings summarized in Table 1, to which we refer.

4.1. A damped single-degree-of-freedom system (SDOF)

We consider a damped SDOF system with mass m ¼ 1, damp-
ingc ¼ 2, stiffnessk ¼ 100, external force f ¼ sin xtð Þ, and solve
for the response during the time duration 10T0, where T0 is the
free-vibration period. To compare the accuracy, we use the error
norms

e0 ¼
P10T0=Dt

i¼0 u ið Þ � u
�

ið Þ
� �2

P10T0=Dt
i¼0 u

�
ið Þ

� �2
0
B@

1
CA

0:5

;

e1 ¼
P10T0=Dt

i¼0 v ið Þ � v
�

ið Þ
� �2

P10T0=Dt
i¼0 v

�
ið Þ

� �2
0
B@

1
CA

0:5

;

e2 ¼
P10T0=Dt

i¼0 a ið Þ � a
�

ið Þ
� �2

P10T0=Dt
i¼0 a

�
ið Þ

� �2
0
B@

1
CA

0:5

ð55Þ
e for various values of f̂ n þ c when q1 ¼ 0 with c ¼ c0.



Fig. 2. Damped SDOF system solved by the q1-Bathe scheme for various values of f̂ n þ c when q1 ¼ 1 �
ffiffiffi
3

p
with c ¼ cp .
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where u, v , a and u
�
, v
�
, a
�
are the numerical and analytical (or refer-

ence) solutions, respectively.
Figs. 1-2 show the error norms of the displacement, velocity,

acceleration, and its sum for the q1-Bathe schemes with

q1; cð Þ ¼ 0; c0ð Þ and q1; cð Þ ¼ 1 �
ffiffiffi
3

p
; cp

� �
, respectively. Since

the actually given sub-step load provides second- and third-order
Fig. 3. Related error norms of the q1-Bathe scheme with given and op

7

accuracy for both the homogeneous and forced responses in the
second- and third-order q1-Bathe schemes, respectively, the error
norms have second- and third-order accuracy for q1 ¼ 0 with

c ¼ c0 and q1 ¼ 1 �
ffiffiffi
3

p
with c ¼ cp, respectively.

The use of the average value and the value using the trapezoidal
rule (two point Newton-Cotes) for the calculation of the sub-step
timal loads, and two-step generalized-a scheme with given loads.



Fig. 4. Related error norms of the q1-Bathe scheme with given and optimal loads and two-step generalized-a scheme with given loads for various values of x =x0 when
h = T0 ¼ 10�2.
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load yields first- and second-order accurate solutions due to the
first- and second-order accuracy in the calculation of the forced
responses, respectively (See Eq. (24)).

Also, as we expected in Sections 3.2, for the case of second-
order accuracy, q1; cð Þ ¼ 0; c0ð Þ, the numerical errors using the
three-, four-, and five-point Newton-Cotes formulas are almost
the same. Likewise, for the q1-Bathe scheme with

q1; cð Þ ¼ 1 �
ffiffiffi
3

p
; cp

� �
having third-order accuracy, the sub-

step loads evaluated from the four- and five-point Newton-Cotes
formulas yield nearly the same solutions.

For the second- and third-order q1-Bathe schemes, the mini-
mum response errors with the minimum number of weights are
obtained when the three and four-point Newton-Cotes formulas
are used. Therefore, in the remaining numerical tests, we refer to
the sub-step loads modeled by three- and four-point Newton-
Cotes formulas as the ‘optimal load’ for the second- and third-
order q1-Bathe schemes, respectively.
Fig. 5. A Howe truss under hig
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Figs. 3–4 show the numerical errors for the q1-Bathe schemes
with the various sub-step loads, and the two-step generalized-a
schemes [8,9] with the given sub-step loads. In the two-step
generalized-a scheme, we use the sub-step sizes (h=2). As well
known, the generalized-a method with q1 –1 gives second-
order accuracy for the displacement and velocity and first-order
accuracy for the acceleration. In this example, the use of the q1-
Bathe scheme with q1 2 ð�1; 1 �

ffiffiffi
3

p
� and c ¼ cp yields smaller

errors than all the considered second-order methods for suffi-
ciently small time step sizes due to the third-order accuracy.

Notably, the optimal sub-step loads provide accuracy enhance-
ments for all considered q1-Bathe methods. The amount of
enhancement is more significant when the method has second-
order accuracy. Fig. 4 shows the error norms for various values of
x =x0 when h = T0 ¼ 10�2. For x < x0, the optimal and given
loads at the sub-step provide similar relative errors. On the other
hand, the difference of numerical errors between the use of opti-
h frequency cyclic loads.



Fig. 6. Vertical displacement of node 5.
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mal and given sub-step loads increases with an increase ofxwhen
x > x0.

4.2. A truss problem in two dimensions subjected to cyclic loading

We consider the truss shown in Fig. 5 subjected to four cyclic
loads [15]. For all elements in the truss, we use the section area
A = 3000 mm2, density q = 8000 kg/m3, and elastic modulus E = 4
GPa. The q1-Bathe schemes with the given and optimal sub-step
loads, and the two-step generalized-a schemes with the given
sub-step loads are compared. The time step size is
h ¼ 2:2e� 5 sec(and h/2 for the generalized-a schemes). The refer-
ence solution is obtained with the q1-Bathe scheme (q1 ¼ 0 and
c ¼ c0), h ¼ 2:2 e� 6 sec and the given sub-step loads used.
Fig. 7. Horizontal displa
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Figs. 6-8 show the vertical displacement of node 5, the
horizontal displacement of node 13, and the relative errors of
the system energies for the various time integration schemes. For
the displacements, all solutions using the q1-Bathe schemes with
the optimal loads provide accurate results. By looking at the sys-
tem energies, we see that the use of the optimal loads reduces
the relative errors by a factor of 102 compared to the use of the
given loads.

4.3. A two-dimensional scalar wave propagation

We consider the solutions of the pre-stressed membrane prob-
lem [40,41,32] using the q1-Bathe schemes (Fig. 9). The governing
equation for this 2D scalar wave propagation problem is
cement of node 13.



Fig. 8. Relative error of kinetic, potential, and total energies.

Fig. 9. 2D scalar wave propagation problem for a pre-stressed membrane, the
shaded area is computational domain.
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1
c20

@2u
@t2

¼ @2u
@x2

þ @2u
@y2

þ f 0; 0; tð Þ ð56Þ

where u is the transverse displacement, and c0 is exact wave speed,
which is set to 1. We use the cyclic external load at the center of the
membrane as

f 0; 0; tð Þ ¼ sin 2ptð ÞH 3 � tð Þ; t > 0 ð57Þ
where H is the Heaviside step function. The exact solution of this
problem is obtained using the Green’s function G x; y; tð Þ[42]:

u x; y; tð Þ ¼
Z t

0
f sð ÞG x; y; t � sð Þds ð58Þ
10
G x; y; tð Þ ¼
H c0t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
2pc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20t

2 � x2 � y2
q ð59Þ

Due to symmetry, we only discretize the domain [0, 20] � [0,
20] using four-node elements. We determine the time step size,
h by the CFL number c0h=xe where the side length of the elements
is used as the characteristic length, xe.

Figs. 10–11 show the numerical and analytical solutions of dis-
placement and velocity variations for two propagation angles using
the 120 � 120 and 280 � 280 element meshes. We see that the 120
� 120 mesh is not sufficiently fine to capture the wave shapes
accurately when the ratio of the wavelength, k, to the element size,
xe, is around 7. Using the mesh of 280 � 280 elements with the
k=xe � 17, the second-order q1-Bathe scheme with the parameters
ðq1;CFLÞ ¼ ð0;1Þ or ð0:65; 1:25Þ provides accurate solutions in
both directions. In contrast, the third-order accurate methods with
the considered values of parameters did not yield accurate solu-
tions. As observed previously, a lower-order method might give
more accuate solutions of wave propagation problems, see for
example, Refs [28,29,32,16]

To solve a problem with an applied load of period T, we often
use h 6 T=10 or equivalently x 6 2p=10h. Also, to minimize the
dispersion errors, we determine the time step size, h, by the CFL
number and use CFL � 1, hence h � 2=x0 for the linear finite ele-
ments. Therefore, in usual wave propagation analysis by direct
time integrations with the linear finite element, we have
x=x0 < 1. Note that as shown in Fig. 4, when x=x0 < 1, the given
and the selected load at the sub-step provide nearly identical
results for both the second- and third-order accurate q1-Bathe
methods.

Fig. 12 shows the relative error norms of displacements and
velocities calculated by the q1-Bathe schemes with the given loads
and the optimal loads. As expected, we observe that the given and
optimal loads provide practically the same results.



Fig. 10. Transverse displacement and velocity variations for two propagation angles at time t ¼ 15 with 120 by 120 finite element mesh.

Fig. 11. Transverse displacement and velocity variations for two propagation angles at time t ¼ 15 with 280 by 280 finite element mesh.
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Fig. 12. Relative error norms of the displacement and velocity variations for two propagation angles at time t ¼ 15.
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5. Concluding remarks

In this paper, we considered the load used at the sub-step of the
q1-Bathe method to enhance the solution accuracy in forced
responses. We first analysed the local and global truncation errors
by using the two-level form of the scheme. We focused on select-
ing (or ‘‘modelling”) the sub-step loads in the form of a weighted
linear sum of the given external loads at various time points, and
found the optimal weights on the loading to minimize the leading
terms of the global truncation errors in forced responses.

We then performed a numerical impulse analysis and obtained
appropriate weights for the sub-step loading. The results from the
numerical impulse solution are found to be the same as when
using the two-, three-, four-, and five-point Newton-Cotes formu-
las. As these formulas are also arrived at by minimizing the trunca-
tion error, we identified that the use of the three- and four-point
Newton-Cotes rules for selecting the sub-step load are optimal,
respectively for the second- and third-order accuracy q1-Bathe
schemes.

In summary, when the external loads are only available at the
full step, we use the load approximated by the trapezoidal rule
in Eq. (48). Otherwise, for the second- and third-order accurate
q1-Bathe method (that is, with c0 in Eq. (26), and with cp in Eq.
(28), respectively), the loads in Eq. (50) and (52) are recommended,
respectively. When x=x0 > 1, where x is the frequency of the
applied load and x0 is the natural frequency of the system anal-
ysed, which is not usually the case in a wave propagation analysis
but often encountered in structural analyses, we may obtain
enhanced solution accuracy by use of the selected sub-step loads
for both the second- and third-order accurate Bathe methods.

Even though the solution accuracy may not necessarily increase
significantly for a practical analysis, the study is nevertheless
important, because the idea of increasing the accuracy by a judi-
cious load selection at the sub-step in the q1-Bathe method is very
valuable to explore, as we did in this paper.
12
Note that while we evaluated the external loads at the sub-step
to enhance the solution accuracy of a forced response, the time
integration method itself has not been changed; therefore, all ben-
eficial characteristics of the q1-Bathe scheme are maintained, and
almost no additional computational cost is needed.

A valuable future endeavor is to identify an even better use of
the values of parameters or to modify the procedures required in
the ‘internal’ calculations corresponding to the sub-step for further
enhancement of the solution accuracy. Also, the presented frame-
work to identify the optimal load at a sub-step should be valuable
for use with other existing or future methods adopting a composite
time stepping strategy.
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Appendix. TheamplificationmatrixAand thedirect loadvectorB

For the q1-Bathe scheme, the amplification matrix and direct
load vector of the two-level form are as follows:

A ¼ 1
D1D2

a11 a12
a21 a22

� �
; B ¼ 1

D1D2

b1

b2

� �

where



a11 ¼ q2
1c2 � 2q2

1c þ q1 � 0:25
	 


c2X4
0 þ 4q2

1c2 � 2q1c2 þ c � 1
	 


cX3
0f

þ 4q2
1c2 þ c2 � 4q1c � 1 þ 4 1 � 2q1cð Þcf2	 


X2
0 þ 4 1 � 2q1c þ cð ÞX0f þ 4

a12 ¼ h 4q2
1c � 2q1c þ c � 2q1

	 

cX2

0 þ 4 1 � 2q1ð ÞcX0f þ 4
� �

a21 ¼ � X2
0
h 4q2

1c � 2q1c þ c � 2q1

	 

cX2

0 þ 4 1 � 2q1ð ÞcX0f þ 4
� �

a22 ¼ q2
1c2 � 2q2

1c þ q1 � 0:25
	 


c2X4
0 þ 4q2

1c2 � 2q1c2 � 8q2
1c þ 4q1c � c þ 4q1 � 1

	 

cX3

0f

þ 4q2
1c2 þ c2 � 4q1c � 1 þ 4 �2q1c þ 4q1 � 1ð Þcf2	 


X2
0 þ 4 �2q1c þ c � 1ð ÞX0f þ 4

b1 ¼ h2

4

4 f n þ 1 � f n
	 


q2
1c4 þ 4 2f nq1 � f n þ 1

	 

q1c3 þ f n þ f n þ 1 � 4q1f n

	 

c2

	 

X2

0

þ4
4 f n þ 1 � f n
	 


q2
1c3 þ 4 f n � f̂ n þ c

� �
q1 � f n þ 1

� �
q1c2

þ f n þ f n þ 1

	 
 þ 2 f̂ n þ c � f n
� �

q1

� �
c

0
B@

1
CAX0f

�16 f n � f n þ 1

	 

q2
1c2 þ 8 2 f n � f̂ n þ c

� �
q1 þ f n � 2f n þ 1 þ f̂ n þ c

� �
q1c

þ4 f n þ f n þ 1

	 
 � 8q1 f n þ f̂ n þ c

� �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

b2 ¼ h
2

2 f n � 2f n þ 1

	 

q1c3 þ f n þ f n þ 1

	 
 � 4f nq1 þ 4 f n þ f̂ n þ c

� �
q2
1

� �
c2 � 2 f n þ f̂ n þ c

� �
q1c

� �
X2

0

þ 8 f n � f n þ 1

	 

q1c2 � 16f nq1c þ 4 f n þ f n þ 1

	 
	 

X0f

þ8 f n � f n þ 1

	 

q1c þ 4 f n þ f n þ 1

	 
 � 8 f n � f̂ n þ c

� �
q1

0
BBB@

1
CCCA
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with D1 ¼ c2X2
0 þ 4cX0f þ 4 and D2 ¼ 0:5 � cq1ð Þ2X2

0 þ
1 � 2cq1ð ÞX0f þ 1, and X0 ¼ x0h.
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